

Contents lists available at ScienceDirect

Thermochimica Acta

journal homepage: www.elsevier.com/locate/tca

Thermodynamic description of [the](http://www.elsevier.com/locate/tca) [Au–Ag–Pb](http://www.elsevier.com/locate/tca) [ternar](http://www.elsevier.com/locate/tca)y system

J. Wang^{a,d,∗}, F.G. Meng^b, M.H. Rong^c, L.B. Liu^d, Z.P. Jin^d

a EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

^b School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China

^c School of Science, Hunan University of Technology, Zhuzhou, Hunan 412008, PR China

^d School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China

article info

Article history: Received 28 September 2009 Received in revised form 30 March 2010 Accepted 1 April 2010 Available online 8 April 2010

Keywords: Thermodynamics Phase diagram CALPHAD Au–Ag–Pb ternary system

ABSTRACT

Combined with previous assessments of the Au–Ag, Ag–Pb and Au–Pb binary systems, thermodynamic description of the Au–Ag–Pb ternary system has been performed using the CALPHAD method and Thermo-calc® software package on the basis of the reported experimental information. The solution phases, including liquid and fcc A1, are modeled as substitutional solutions, of which the excess Gibbs energies are expressed by the Redlich–Kister–Muggianu polynomial. The solubility of Ag in the Au–Pb intermediate compounds, Au_2Pb , $AuPb_2$ and $AuPb_3$, is not taken into account due to the lack of experimental data. Thermodynamic properties of liquid alloys, liquidus projection and several vertical sections of this ternary system have been calculated, which are in reasonable agreement with the reported experimental data. Finally, a set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in the Au–Ag–Pb ternary system has been obtained in the present work.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Au-based alloys including Au–Sn, Au–Sb, Au–Si and Au–Ge eutectic alloys as high temperature solders are useful for bonding applications in microelectronic and optoelectronic packages [1–4]. Especially, Au–20 wt.%Sn eutectic alloy is attractive in high power electronic and optoelectronic devices because it has superior resistance to corrosion and high electrical and thermal conductivity as well as high mechanical strength [5–10]. However, to reduce the cost of Au-based solder, other elements such as A[g,](#page-6-0) [Al,](#page-6-0) [Bi,](#page-6-0) Cu, Ge, In, Pb, Sb, Zn, etc., may be added to replace a part of the Au. In order to understand better the role of alloying elements and to develop new Au-based solders, thermodynamic properties and phase diagrams of multi-component s[ystems](#page-6-0) [o](#page-6-0)f the Au-based alloys are necessary. Recently, Many binary systems and ternary systems of the Au-based alloys such as Au–Pb, Au–Al, Au–In, Au–Zn binary systems and Au–Ag–Si, Au–Ag–Sn, Au–Bi–Sb, Au–Ge–Sn, Au–Ge–Sb, Au–Ge–Si, Au–In–Sn, Au–In–Sb, Au–Si–Sn and Au–Co–Sn ternary systems have been assessed by Wang, Liu and Jin [11–24]. Thermodynamic descriptions of the corresponding binary and ternary systems have been developed in their assessments through the CALPHAD method [25]. However, to the best of our knowledge,

no thermodynamic modelling of the Au–Ag–Pb ternary system has been reported.

The purpose of the present work is to evaluate the Au–Ag–Pb ternary system and to obtain a thermodynamic description of this ternary system using the CALPHAD method [25] and Thermo-calc® software package [26]. A set of self-consistent thermodynamic parameters describing various phases in this ternary system is obtained.

2. Exp[erimen](#page-6-0)tal information

2.1. The sub-binary systems

The Au–Ag, Ag–Pb and Au–Pb binary systems have been assessed thermodynamically by Hassam et al. [27], Lee et al. [28] and Wang et al. [11], respectively. Good agreements are achieved between the calculated thermodynamic properties and phase diagram and experimental data. The calculated phase diagrams of the Au–Ag, Ag–Pb and Au–Pb binary systems are shown in Appendix A, respectively. The thermodynami[c](#page-6-0) [para](#page-6-0)meters f[ormul](#page-6-0)ating the Gibb[s](#page-6-0) [ener](#page-6-0)gies of various phases in the Au–Ag, Ag–Pb and Au–Pb binary systems obtained by Hassam et al. [27], Lee et al. [28] and Wang et al. [11] are adopted directly in the p[resent work](#page-6-0).

2.2. The Au–Ag–Pb ternary system

[The](#page-6-0) thermodynamic prope[rties](#page-6-0) and pha[se](#page-6-0) [dia](#page-6-0)gram of the Au–Ag–Pb ternary system were investigated experimentally by

[∗] Corresponding author at: EMPA, Swiss Federal Laboratories for Materials Testing and Resea[rch, Lab](#page-6-0)oratory for Joining and Interface Technology, Überlandstrasse 129, CH-8600 Dübendorf, Zurich, Switzerland. Tel.: +41 44 823 4250.

E-mail address: jiang.wang@empa.ch (J. Wang).

^{0040-6031/\$ –} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2010.04.003

Table 1 Experimental information in the Au–Ag–Pb ternary system.

Reference	Method	Experimental data	Used in optimization
$[29]$	Electromotive force (EMF)	Activity of Pb in liquid from 1048 K to 1303 K for five constant ratios of $x_{A\sigma}/x_{Au}$ Liquidus	Yes N ₀
$[30]$	Calorimetry	Enthalpy of mixing of liquid at 973 K along: Ag _{0.20} Pb _{0.80} -Au, Au _{0.20} Pb _{0.80} -Ag, Au _{0.40} Pb _{0.60} -Ag	Yes
$[31]$	Differential thermal analysis	Liquidus Invariant reactions Vertical sections: 40 at.% Pb, $Au_{0.20}Ag_{0.80}$ -Pb, $Au_{0.50}Ag_{0.50}$ -Pb, $Au_{0.25}Pb_{0.75}$ -Ag	Yes
$[32]$	Differential thermal analysis	Liquidus Invariant reactions Vertical sections: 40 at.% Pb, $Au_{0.20}Ag_{0.80}$ -Pb, $Au_{0.50}Ag_{0.50}$ -Pb, $Au_{0.25}Pb_{0.75}$ -Ag	Yes

several authors [29–32]. Prince et al. [33] reviewed this ternary system and also gave recommended temperatures and compositions of the invariant reactions when compiling phase diagrams of Au-based alloys. On the basis of these experimental results in Refs. [31,32], no stable ternary compound was found in the Au–Ag–Pb terna[ry](#page-6-0) [system](#page-6-0). All experim[ental](#page-6-0) [in](#page-6-0)formation in this ternary system are summarized in Table 1.

The thermodynamic properties of liquid alloys in the Au–Ag–Pb ternary system were investigated by Hager and Zambrano [29] and Hassam and Gh[e](#page-6-0)ribi [30]. Using electromotive [force](#page-6-0) (EMF) method, Hager and Zambrano [29] measured activities of Pb in liquid Au–Ag–Pb alloys in the temperature range of 1048–1303 K at the different sections: $x_{Ag}:x_{Au} = 5.63$, $x_{Ag}:x_{Au} = 2.30$, x_{Ag} : x_{Au} = 1.00, x_{Ag} : x_{Au} = 0.18 and x_{Ag} : x_{Au} = 0.43. Hassam and Gheribi [30] employed a [h](#page-6-0)igh [tem](#page-6-0)perature Calvet calorimeter to determine the enthalpies of mixin[g](#page-6-0) [of](#page-6-0) [li](#page-6-0)quid Au–Ag–Pb alloys at 973 K for the following sections: $Ag_{0.20}Pb_{0.80} - Au$, $Au_{0.20}Pb_{0.80} - Ag$ and $Au_{0.40}Pb_{0.60} - Ag.$ These experimental data reported by Hager and Zambrano [29] and Hassam and Gheribi[30] are used in the present optimization.

Hager and Zambrano [29] determined seven liquidus temperatures of the ternary Au–Ag–Pb alloys extrapolated from the electromotive force data. Later, through differential thermal anal[ysis,](#page-6-0) Hassam et al. [31] d[etermi](#page-6-0)ned the liquidus temperatures of the four vertical sections: $Au_{0.20}Ag_{0.80}$ -Pb, $Au_{0.50}Ag_{0.50}$ -Pb, $Au_{0.25}Pb_{0.75}$ -Ag [and](#page-6-0) 40 at.% Pb and thus the liquidus projection was derived. Recently, Hassam and Bahari [32] investigated the phase diagram of the Au–Ag–Pb ternary system using differential th[ermal](#page-6-0) analysis and X-ray powder diffraction analysis. The same four vertical sections: $Au_{0.20}Ag_{0.80} - Pb$, $Au_{0.50}Ag_{0.50} - Pb$, $Au_{0.25}Pb_{0.75}$ –Ag and 40 at.% Pb w[ere m](#page-6-0)easured and two peritectic transition reactions (U₁: Liquid + Au₂Pb \leftrightarrow fcc(Ag,Au) + AuPb₂ and U_2 : Liquid + AuPb₂ \leftrightarrow fcc(Ag,Au) + AuPb₃) and one ternary eutectic reaction (E: Liquid \leftrightarrow fcc(Ag,Au) + fcc(Pb) + AuPb₃) were characterized. Experimental information reported by Hager and Zambrano [29], Hassam et al. [31] and Hassam and Bahari [32] is taken into account in the present optimization.

3. Thermodynamic modeling

3.1. Pure elements

The stable forms of the pure elements at 298.15 K and 1 bar are chosen as the reference states. The Gibbs energy for the element i in ϕ status is given as:

$$
{}^{0}G_{i}^{\phi}(T) = G_{i}^{\phi}(T) - H_{i}^{SER} = a + b \cdot T + c \cdot T \ln T + d \cdot T^{2} + e \cdot T^{3}
$$

$$
+ f \cdot T^{-1} + g \cdot T^{7} + h \cdot T^{-9}
$$
(1)

where $H^{\rm SER}_i$ is the enthalpy of the element i in its standard reference state (SER) at 298.15 K and 1 bar; T is the absolute temperature in K; $G_i^\phi(T)$ is the Gibbs energy of the element i with structure ϕ . In the present work, the Gibbs energies of the elements Ag, Au and Pb, $^{0}G^{\phi}_{\mathrm{Ag}}(T)$, $^{0}G^{\phi}_{\mathrm{Au}}(T)$ and $^{0}G^{\phi}_{\mathrm{Pb}}(T)$ are taken from the SGTE (Scientific Group Thermodata Europe) database compiled by Dinsdale [34].

3.2. Solution phases

The substitutional solution model is employ[ed to d](#page-6-0)escribe the solution phases including liquid and fcc A1(Au), respectively. The molar Gibbs energy of the solution phase ϕ (ϕ = liquid, and fcc_A1)

Thermodynamic parameters for the Au–Ag–Pb ternary system.

^a Note: Gibbs energies are expressed in J/mol. The lattice stabilities of the elements Au, Ag and Pb in liquid and fcc.A1 were given by Dinsdale [34].

Table 3 Invariant reactions in the Au–Ag–Pb ternary system.

System	Reaction	Type	T(K)	Composition		Reference
				x_{Ag}^{L}	x_{Au}^L	
Au-Pb system	$L + fcc(Au) \leftrightarrow Au_2Pb$	p_1	707	$\overline{}$	0.640	$[11]$
	$L + Au2Pb \leftrightarrow AuPb2$	p ₂	526	$-$	0.259	
	$L + A$ uPb ₂ \leftrightarrow AuPb ₃	p ₃	495	$\overline{}$	0.174	
	$L \leftrightarrow A \mu P b_3 + f c c (P b)$	e ₁	488	$\qquad \qquad -$	0.152	
Ag-Pb system	$L \leftrightarrow fcc(Ag) + fcc(Pb)$	e ₂	577	0.043	$\qquad \qquad -$	$[28]$
Au-Ag-Pb system	$L + Au2Pb \leftrightarrow fcc(Ag,Au) + AuPb2$	U_1	524	0.0053	0.2610	$[31]$
			491	$\qquad \qquad -$	$\qquad \qquad -$	$[32]$
			522	$-$	$\qquad \qquad -$	$[33]$
			524	0.0043	0.2596	This work
	L + AuPb ₂ \leftrightarrow fcc(Ag,Au) + AuPb ₃	U_2	496	0.0048	0.1861	$[31]$
			487	-	-	$[32]$
			491	-	-	$[33]$
			493	0.0051	0.1738	This work
	$L \leftrightarrow fcc(Ag,Au) + fcc(Pb) + AuPb_3$	E	487	0.0051	0.1696	$[31]$
			482.5	$\qquad \qquad -$	$\qquad \qquad -$	$[32]$
			485	-	$\qquad \qquad -$	$[33]$
			486	0.0052	0.1521	This work

Fig. 1. Comparison of the calculated activities of Pb in liquid ternary alloys with experimental data [29] referred to liquid Pb at 1200 K. (a) $x_{Ag}:x_{Au} = 5.63$ and $x_{Ag}:x_{Au} = 0.43$; (b) $x_{\text{Ag}}:x_{\text{Au}} = 2.30$ and $x_{\text{Ag}}:x_{\text{Au}} = 0.18$; (c) $x_{\text{Ag}}:x_{\text{Au}} = 1.0$.

Fig. 2. Comparison of the calculated enthalpies of mixing of liquid ternary alloys with experimental data [30] referred to liquid Ag, Au and Pb at 973 K. (a) Ag_{0.20}Pb_{0.80}-Au; (b) $Au_{0.20}Pb_{0.80}$ - Ag and (c) $Au_{0.40}Pb_{0.60}$ - Ag.

can be expressed as:

$$
G_{\rm m}^{\phi} = \sum x_i^0 G_i^{\phi} + RT \sum x_i \ln(x_i) + {}^{E}G_{\rm m}^{\phi}
$$
 (2)

where ${}^{0}G_{i}^{\phi}$ is the molar Gibbs energy of the element *i* (*i* = Ag, Au, Pb) with the structure ϕ , x_i the mole fraction of component i , *R* gas constant, *T* temperature in K, $^{\rm E}$ G $^{\phi}_{\rm m}$ the excess Gibbs energy. The excess Gibbs energy of phase ϕ can be expressed by the Redlich–Kister polynomial [35] as:

$$
{}^{E}G_{m}^{\phi} = x_{Ag}x_{Au} \sum_{j=0}^{n} {}^{(j)}L_{Ag,Au}^{\phi}(x_{Ag} - x_{Au})^{j} + x_{Ag}x_{Pb} \sum_{j=0}^{n} {}^{(j)}L_{Ag,Pb}^{\phi}(x_{Ag} - x_{Pb})^{j}
$$

$$
+ x_{Au}x_{Pb} \sum_{j=0}^{n} {}^{(j)}L_{Au,Pb}^{\phi}(x_{Au} - x_{Pb})^{j} + x_{Ag}x_{Au}x_{Pb}L_{Ag,Au,Pb}^{\phi}
$$
(3)

where $^{(j)}L^{\phi}_{\mathsf{Ag},\mathsf{Au}},$ $^{(j)}L^{\phi}_{\mathsf{Ag},\mathsf{Pb}}$ and $^{(j)}L^{\phi}_{\mathsf{Au},\mathsf{Pb}}$ are binary interaction parameters, which are taken directly from the Au–Ag, Ag–Pb and [Au–Pb](#page-6-0) systems assessed by Hassam et al. [27], Lee et al. [28] and Wang et al. [11], respectively. The ternary interaction parameter $L_{\mathsf{Ag},\mathsf{Au},\mathsf{Pb}}^{\phi}$ is formulated with Redlich–Kister–Muggianu expression [36] as follows:

$$
L_{\rm Ag,Au,Pb}^{\phi} = x_{\rm Ag}^{(0)} L_{\rm Ag,Au,Pb} + x_{\rm Au}^{(1)} L_{\rm Ag,Au,Pb} + x_{\rm Pb}^{(2)} L_{\rm Ag,Au,Pb}
$$
(4)

where $^{(j)}L_{\rm Ag, Au, Pb}$ are parameters to be evaluated in the present work.

3.3. Intermetallic compounds

In the Au–Ag–Pb ternary system, the solubilities of Ag in Au_2Pb , AuPb₂ and AuPb₃ are not considered due to the lack of the available experimental information. Thus the Gibbs energies of the binary intermetallic compounds Au_2Pb , $AuPb_2$ and $AuPb_3$ are taken directly from the Au–Pb binary system optimized by Wang et al. [11] during the present optimization and calculation of this ternary system.

4. Results and discussion

Using the compatible lattice stabilities of the elements Ag, Au and Pb compiled by Dinsdale [34], the model parameters for liquid phase in the Au–Ag–Pb ternary system are optimized using the PARROT module in the Thermo-calc® software package developed

Fig. 3. Calculated liquidus projection of the Au–Ag–Pb ternary system in the pres[ent](#page-6-0) work. (a) Overview and (b) Pb-rich part.

by Sundman et al. [26]. This module works through minimizing the square sum of the differences between experimental data and calculated values. During the present optimization procedure, each set of experimental data is given a certain weight according to the reliability and compatibility of experimental data. It should be clai[med](#page-6-0) [t](#page-6-0)hat the weights of much more reliable experimental data are higher than that of less ones during the optimization. For thermodynamic data, in general, the activity of a component measured by the EMF method are much more reliable and within a smaller experimental error than that determined by vapour pressure method, while the enthalpy of mixing of liquid alloys obtained directly by calorimetry are much more believable than that derived from indirect measurements by other methods (such as EMF). As for phase diagram data, it is better to use the measured experimental data by thermal analysis method in the optimization.

Thermodynamic parameters for all condensed phases in the Au–Ag–Pb system are summarized in Table 2. Table 3 shows invariant reactions for Ag–Pb and Au–Pb binary systems and the Ag–Au–Pb ternary system. Thermodynamic properties of liquid alloys, liquidus projection and several vertical sections of this ternary system are also calculated and compared with the experimental data as illustrated in [Figs.](#page-1-0) [1–](#page-1-0)[7.](#page-2-0) [Reason](#page-2-0)able agreements

Table 4 Liquidus temperatures of ternary Au–Ag–Pb alloys.

Alloy composition			Liquidus temperature, T_{liq} (K)		
X_{Ag}	X_{A11}	$X_{\rm Pb}$	Experiment [29]	Calculation	
0.7693	0.1367	0.094	1163	1157	
0.6810	0.1210	0.198	1061	1051	
0.6273	0.2727	0.100	1182	1168	
0.4500	0.4500	0.100	1175	1186	
0.2706	0.6294	0.100	1219	1199	
0.1373	0.7627	0.100	1228	1204	
0.1220	0.6780	0.200	1101	1080	

are achieved between the calculated results and the experimental data.

Fig. 1 shows comparisons between the calculated activities of Pb in liquid Au–Ag–Pb ternary alloys and the experimental data measured by Hager and Zambrano [29] at 1200 K. As can be seen, the calculated activities of Pb in liquid phase along five cross sections with Ag to Au ratio of 5.63, 2.30, 1.00, 0.18 and 0.43 at 1200 K are in excellent agreement with the experimental data [29].

Fig. 2 compares the calculated enthalpies of mixing of liquid Au–Ag–Pb ternary all[oys](#page-6-0) [wit](#page-6-0)h the experimental data reported by Hassam and Gheribi [30] at 973 K. The calculated enthalpies of mixing of liquid phase for the cross sections $(Au_{0,20}Pb_{0.80} - Ag$ and $Au_{0.40}Pb_{0.60}$ –Ag) agree well with experimental data [30] as given in Fig. 2(b) and (c). Fig. 2(a) also presents a slight discrepancy between the calculated enthalpies of mixing of liquid alloys along the cross section ($Ag_{0.20}Pb_{0.80}$ $Ag_{0.20}Pb_{0.80}$ $Ag_{0.20}Pb_{0.80}$ $Ag_{0.20}Pb_{0.80}$ $Ag_{0.20}Pb_{0.80}$ -Au) and the experimental data measured by Hassam and Gheribi [30]. From Fig. 2(a), it is concluded that the calculated enthalpy of mixing of liquid [in](#page-6-0) [the](#page-6-0) Ag–Pb binary system [in](#page-3-0) [Ref.](#page-3-0) [28] is much negative than experimental data [30]. Thus, this discrepancy originates mainly from enthalpy of mixing of the Ag–Pb binary system. Furthermore, the derivation is generally within ex[perime](#page-6-0)ntal [error](#page-3-0) [be](#page-3-0)cause the relative experimental error o[f enth](#page-6-0)alpies of mixing of liquid alloys was given t[o be ab](#page-6-0)out 5% in Ref. [30].

In the Au–Ag–Pb ternary system, all invariant reactions (U_1, U_2) and E) are also given in Fig. 3 and Table 3. From Table 3, the calculated temperatures of invariant reactions (U_1 at 524K and U_2 at 493 K) agree well with the experimental data given by Hassam et al. [31] and the values assessed by Prince et al. [33], but deviate from the experimental data (U_1 at 491 K and U_2 at 487 K) measured

Fig. 4. Calculated vertical section of $Au_{0.20}Ag_{0.80}$ -Pb and compared with experimental data [31,32].

Fig. 5. Calculated vertical section of Au_{0.50}Ag_{0.50} -Pb and compared with experimental data [31,32].

by Hassam and Bahari [32], respectively. This deviation is mainly originated from experimental error because the temperatures of [all](#page-6-0) invariant reactions in this ternary system are very close to th[ese](#page-6-0) of invariant reactions in the Au–Pb binary system. It is difficulty to measure accurately reaction temperatures because of the small temperatur[e](#page-6-0) [rang](#page-6-0)e. On the other hand, according to the experimental conditions, the experimental results obtained by Hassam et al. [31] are more reliable than the measured values in Ref. [[32\]](#page-4-0) because the alloy samples were annealed for six months at 473 K before thermal analysis in order to decrease thermal effect at low temperature. In addition, care and great attention were paid to fix well the latest experimental data measured by Hassam and Bahari [\[](#page-6-0)32] during the present optimization. However, t[his](#page-6-0) [atte](#page-6-0)mpt was not successful. Meanwhile, the calculated temperature of eutectic reaction E (486 K) is in good agreement with the experimental [data](#page-4-0) reported by Hassam et al. [31], Hassam and Bahari [32] and the values assessed by Prince et al. [33]. As shown in Table 3, the differences between the calculated equilibrium compositions of liquid

Fig. 6. Calculated vertical section of $Au_{0.25}Pb_{0.75}$ -Ag and compared with experimental data [31,32].

Fig. 7. Calculated vertical section at 40 at.% Pb and compared with experimental data [31,32].

phase for all invariant reactions (U_1, U_2 and E) and the experimental data measured by Hassam et al. [31] are very small (about 2 at.%).

Table 4 compares the calculated liquidus temperatures of seven alloys with the experimental results extrapolated from the electromotive force data by Hager and Zambrano [29]. There is an obvious difference between the calculated liquidus temperatures and experimental va[lues](#page-6-0) [29]. It should be pointed out that large error may exist in such deduced values of liquidus temperatures in comparison with the data obtained directly using thermal analysis.

Figs. 4–7 present the calcul[ated](#page-6-0) vertical sections of Au_{0.20}Ag_{0.80}-Pb, Au_{0.50}Ag_{0.50}-Pb, Au_{0.25}Pb_{0.75}-Ag and 40 at.% Pb with the e[xperim](#page-6-0)ental data determined by Hassam et al. [31], Hassam and Bahari [32]. As can be seen, the calculated phase relations and phase boundaries of liquid phase in Figs. 4–6 are in good agreement with experimental data [31,32]. In Fig. 7, the calculated phase relations of the vertical section at 40 at.% Pb is consistent with the experimental results, while [the](#page-6-0) [c](#page-6-0)alculated phase bo[undarie](#page-6-0)s of liquid phase in the Au–Pb side show a slight deviation from the experimental [data me](#page-6-0)[asured](#page-4-0) [by](#page-4-0) Hassam et al. [31], Hassam and Bahari [32].

5. Conclusions

Based on [the](#page-6-0) [pr](#page-6-0)evious assessments of the Au–Ag, Ag–Pb and Au–Pb binary systems and available experimental information on the Au–Ag–Pb ternary system, the thermodynamic description of the Ag–Au–Pb ternary system has been developed using the CALPHAD method and Thermo-calc® software package. A set of self-consistent thermodynamic parameters formulating the Gibbs energies of various phases in the Au–Ag–Pb ternary system have been obtained in the present work, which can be used to reproduce most experimental data including thermodynamic properties and phase equilibria data.

Acknowledgements

This work was financially supported by the Scientific Research Foundation of Hunan Province Department of Land & Resources, China (Grant No. 2008K 22) and National Science Foundation of China (Grant Nos. 50771106 and 50731002).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tca.2010.04.003.

References

- [1] J.-H. Park, J.-H. Lee, Y.-H. Lee, Y.-S. Kim, J. Electron. Mater. 31 (2002) 1175.
- [2] T. Toshi[o, K. Satoru, K. Masanori, K. Noriharu](http://dx.doi.org/10.1016/j.tca.2010.04.003), S. Katsuhiko, Mater. Trans. 46 (2005) 1825.
- [3] Q. Wang, S.-H. Choa, W. Kim, J. Hwang, S. Ham, C. Moon, J. Electron. Mater. 35 (2006) 425.
- [4] J.Y. Tsai, C.W. Chang, Y.C. Shieh, Y.C. Hu, C.R. Kao, J. Electron. Mater. 34 (2005) 182.
- [5] J.S. Kim, W.S. Choi, D. Kim, A. Shkel, C. Lee, Mater. Sci. Eng. A 458 (2007) 101.
- [6] Y.C. Liu, J.W.R. Teo, S.K. Tung, K.H. Lam, J. Alloys Compd. 448 (2008) 340.
- [7] J.-W. Yoon, H.-S. Chun, S.-B. Jun, Mater. Sci. Eng. A 473 (2008) 119.
- [8] J.-W. Yoon, H.-S. Chun, S.-B. Jun, J. Alloys Compd. 469 (2009) 108.
- [9] G.S. Zhang, H.Y. Jing, L.Y. Xu, J. Wei, Y.D. Han, J. Alloys Compd. 476 (2009) 138. [10] D.Q. Yu, H. Oppermann, J. Kleff, M. Hutter, J. Mater. Sci. Mater. Electron. 20
- (2009) 55. [11] J. Wang, H.S. Liu, Z.P. Jin, CALPHAD 28 (2004) 91.
- [12] J. Wang, H.S. Liu, L.B. Liu, Z.P. Jin, Trans. Nonferrous Met. Soc. China 17 (2007) 1405.
- [13] J. Wang, H.S. Liu, L.B. Liu, Z.P. Jin, CALPHAD 31 (2007) 545.
- [14] J. Wang, F.G. Meng, H.S. Liu, L.B. Liu, Z.P. Jin, J. Electron. Mater. 36 (2007) 568.
- [15] J. Wang, C. Leinenbach, M. Roth, J. Alloys Compd. 481 (2009) 830.
- [16] J. Wang, C. Leinenbach, M. Roth, J. Alloys Compd. 485 (2009) 577.
- [17] J. Wang, C. Leinenbach, M. Roth, International Conference CALPHAD XXXVIII, Prague, Czech Republic, May 17–22, 2009.
- [18] H.S. Liu, C.L. Liu, C. Wang, Z.P. Jin, K. Ishida, J. Electron. Mater. 32 (2003) 81.
- [19] H.S. Liu, C.L. Liu, K. Ishida, Z.P. Jin, J. Electron. Mater. 32 (2003) 1290.
- [20] H.S. Liu, K. Ishida, Z.P. Jin, Y. Du, Intermetallics 11 (2003) 987.
- [21] H.S. Liu, Y. Cui, K. Ishida, Z.P. Jin, Y. Du, CALPHAD 27 (2003) 27.
- [22] H.S. Liu, J. Wang, Y. Du, Z.P. Jin, Z. Metallkd. 95 (2004) 45.
- [23] F.G. Meng, H.S. Liu, L.B. Liu, Z.P. Jin, J. Alloys Compd. 431 (2007) 292. [24] H.Q. Dong, S. Jin, L.G. Zhang, J.S. Wang, X.M. Tao, H.S. Liu, Z.P. Jin, J. Electron. Mater. 38 (2009) 2158.
- [25] L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.
- [26] B. Sundman, B. Jansson, J.-O. Andersson, CALPHAD 9 (1985) 153.
- [27] S. Hassam, J. Ågren, M. Gaune-Escard, J.P. Bros, Metall. Trans. A 21 (1990) 1877.
- [28] B.-Z. Lee, C.-S. Oh, D.N. Lee, J. Alloys Compd. 215 (1993) 293.
- [29] J.P. Hager, A.R. Zambrano, Trans. Met. Soc. AIME 245 (1969) 2313.
- [30] S. Hassam, A. Gheribi, Thermochim. Acta 464 (2007) 1.
- [31] S. Hassam, M. Gambino, J.P. Bros, Thermochim. Acta 257 (1995) 83.
- [32] S. Hassam, Z. Bahari, J. Alloys Compd. 392 (2005) 120.
- [33] A. Prince, G.V. Raynor, D.S. Evans, Phase Diagrams of Ternary Gold Alloys, The Institute of Metals, London, 1990.
- [34] A.T. Dinsdale, CALPHAD 15 (1991) 317.
- [35] O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345.
- [36] Y.M. Muggianu, M. Gambino, J.P. Bros, J. Chim. Phys. 72 (1975) 83.